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Abstract. We present the estimation of  heritabilities of  an 
observed trait in situations where evaluation of  several 
pure breeding lines is performed in a trial at a single 
location and in trials f rom several locations. For  the 
single location situation, we evaluate exact confidence 
intervals, the probability of  invalid estimates, and the 
percentage points of  the distribution of  heritability. Sim- 
ulations were performed to numerically verify the results. 
Additionally, approximations to the bias and standard 
error of  the estimate were obtained and are presented 
along with their simulated values and coefficients of  
skewness and kurtosis. For  trials in several locations, 
explicit expressions for exact values of  confidence limits 
are not available. Further, one would require knowledge 
of  one more parameter, represented by the ratio of  geno- 
type x environment (G x E) interaction variance to er- 
ror variance, in addition to the number of  genotypes, 
replication and true heritability value. Approximations 
were made for bias and the standard error of  estimates of  
heritability. The evaluation of  the distribution of  herita- 
bility and its moments was recognized as a problem of 
the linear function of  an independent chi-square. The 
methods have been illustrated by data from experiments 
on grain and straw yield of  64 barley genotypes evaluated 
at three locations. 
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Introduction 

An assessment of the heritability of various traits is of 
considerable importance in crop improvement programs; 
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for example, to predict response to selection. Estimates of 
heritability are available in several experimental situa- 
tions, but the standard errors of these estimates, or the 
confidence intervals of heritability, have been reported 
mostly for parent-offspring data (Graybill et al. 1956; 
Bogyo and Becker 1963; Broemeling 1969). Falconer 
(1982, pp 165-167) gave a large sample standard error 
where the heritability was obtained from the regression of 
offspring on parents. Exact confidence intervals for heri- 
tability were obtained by Knapp et al. (1985) when the 
data were collected on a progeny-mean basis from several 
environments. The standard errors and confidence inter- 
vals of response to selection were given by Bridges et al. 
(1991). General formulae for the ratio of variances were 
provided by Graybill et al. (1956) for parent-offspring 
data and Graybill and Wang (1979) for a two-factor nest- 
ed model. 

The purpose of the present paper is to provide expres- 
sions for the standard errors of the estimate of heritability 
from the analysis of variance on data generated in a 
randomized complete block design conducted in one en- 
vironment (or single trial) and in several environments (or 
multi-locational trials). This paper also studies the behav- 
ior of the distribution of heritability, using simulation 
techniques. Barley data have been used to illustrate the 
methodology. 

Materials and methods 

Estimation of  heritability & a single trial 

Consider estimating the heritability h 2 of a trait Y from the 
responses of a set of v inbred lines, chosen randomly to represent 
a population of lines, when grown in b randomized complete 
blocks in a single trial. Let Yij be the response of the i-th genotype 
grown in the j-th block (i = 1, 2 .... v, j = t, 2, ..., b). A model for 
Yij and the parameters involved is 

Yij = la + gi + flj + ~ij (1) 
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where # is general mean, gi represents the effect of i-th genotype 
and is assumed to be independent and normally distributed with 
zero mean and variance rrg 2 , flj is the unknown fixed effects of the 
j-th block, and ei~ values are experimental errors assumed to be 
independently normally distributed with zero mean and vari- 
ance cr~ (i = 1 . . . .  v; j = 1, 2,... b). Broad sense heritability (h 2) of 
a trait is the ratio of genetic variability (G~) to phenotypic vari- 
ability (rr~ + ~r~) and is given by 

h 2 = a~ I(ag + a~). (2) 

Generally, estimation of variance components is based on anal- 
ysis-of-variance (ANOVA) estimates obtained as outlined in 
Table 1. Estimates of ~ and rr~ are 

^2=M e and ~g2=(Mg-Me)/b. O" e 

An estimate 

Thus an estimate fi2 of heritability h 2 is 

f~2 = 4gz/(~2 + 4gZ) = (V, -- 1)/(V~ + b - 1) (3) 

where V~=Mg/M, is the variance ratio. Note that the exact 
distribution of 

2 2 W=V~ ar + b  fig2) = V r / [ J  + b h  2 (1 -h2 )  -11 

is the F distribution with q = v - 1  and f = ( v - 1 )  ( b - 1 )  df. Thus 
the exact distribution of fi2 can easily be traced. We know that 
the estimate fi2 is biased for h 2 and may assume negative 
(invalid) values. The amount of bias is of interest to plant breed- 
ers. We give expressions for bias, standard error, probability of 
invalid estimates, and confidence interval below. Appendix I 
gives the method of obtaining them and the expressions for the 
coefficients involved but not reproduced in this section. 

Bias b (~2) = 2 (1 - h 2) [1 + (b - 1) h 2] [1 + (b - 2) h2]/(h 2 b f). 

Standard error SE(fa2)=(l - h  2) [1 + ( b - l )  h 2] [2/(bf111/2. 

Probability of invalid estimate H [q, f, (1 + b 2 2)- 1] . 

Probability distribution of fa 2 H [q, f, y]. 

100(1-o 0 % confidence interval ( L, h~) where 
fi2 = (V,-  Fu)/[V ~ + (b - 1) Fu] 

~l 2 = ( V  r - -  F L ) / [ V  r + (b - 1) FL]. 

An estimate of bias in fi2 can be obtained by substituting the 
estimate of h 2. This estimate can be subtracted from [a 2 to correct 
for the bias. Several statistical packages and libraries of mathe- 
matical subroutines contain the evaluation of the probability of 
lower tail or percentage points of the F distribution and may 
facilitate the computations in this section. In order to evaluate 
the upper a probability point of the distribution of fi2, let y, be 
the upper ~ probability point of the F distribution with q and f 
dr, i.e. Prob (F, f>  y , )= a then the corresponding point la= = for 

. . . .  2 "~' 2 2 1 2 2 hentabdlty h is h~ -- [(1 + b 2 ) y ~ -  ]/[(1 + b ) y~ + b -  1]. Fur- 
ther, in order to test a given value of heritability, say h 2, one 
may compute the exact probability level = Prob (fa 2 > ho 2) = 1 
- n ( q ,  f, u), where u=[1 + b  h2/(1 -h2)]/[1 + b  h2/(l - h2)]. 

The standard error (SE) gives a measure of the precision of 
the estimate. In cases where confidence intervals are reported, 
the SE of ~2 may not be necessary. For situations, where the 

2 distribution of h approximates to the normal distribution, then 
2 evaluation of SE (h)  is required to obtain the sampling distribu- 

tion of the estimate. If several independent estimates of heritabil- 
ity are to be combined, the standard errors determine the 
weights used in the pooled estimate of heritability. Further, 
SE (~2) does not require any additional parameter, such as a 
confidence coefficient in the confidence interval. 

Table 1. Analysis of variance for single location data 

Source df Mean square Expected mean 
square 

Block b - 1  Not relevant Not relevant 
Genotypes q = V - -  1 M g  0 -2 + b a 2 
Error f = ( v - 1 )  ( b -  1) M e a 2 

Table 2. Analysis of variance for multilocation data 

Source df  Mean square Expected mean 
square 

Environ- L -  1 Not relevant 
ment (g) 

Blocks/ ( r -  1) L Not relevant 
env. 

Genotype q = v -  1 M g  

(G) 
G x E ( v -  1) ( L -  1) M~ 

Error f =  ( v -  1) M~ 
�9 ( b - l )  L 

2 a ~ + b  ~r~+b L ~g 

.~+b.~ 

Estimation of heritability from multi-location trials 

Consider a series of trials conducted in randomised complete 
block design with v genotypes and b replications, over L envi- 
ronments. Let h 2 be the heritability of trait Y on which we 
observed Yljk as the response from i-th genotype (i = 1 . . . . .  v), j-th 
block (j = 1 . . . .  , b) over the k-th environment (k = 1, . . . ,  L). The 
model for Yljk is 

Yijk = ~ + gi + ~k + filk + fljk + ~ijk (4) 

where # is the general mean, gl is the effect of i-th genotype, ~k 
is the effect of the k-th environment, 6~k is the interaction effect 
between the i-th genotype and the k-th environment, and/3j~ is 
the effect of the j-th block within the k-th environment. The 
effects gi s, 3ik S, and e s are assumed to be independently and 

2 randomly distributed with zero means and variances ag, ar 2 and 
a~ z. The heritability of trait Y, denoted by h 2, is defined as 

h 2 = ~/ (~  + o? + ~ / .  (51 

Estimation 

To estimate h z we construct an ANOYA table (Table 2). 
Expected values of mean the square appear similar to those 

given in Table 2, for any of the following three models: (1) geno- 
typic effects fixed and environment random where a~ = variance 
of the fixed genotypes, (2) genotype random and environment 
fixed, and (3) both genotype and environment random. The vari- 
ance components are estimated as 

^2 2 G = Me, ch = (MI -- Mr and ag 2 = (Mg -- Ml)/(b L). 

Let us define the two variance ratios as 

Vg = Mg/M~ and V t= MJMo.  

Thus an estimate of h 2 is 

fi2 = &g2/(3.2 + 02 + 0~) (6) 

= (Mg-- M1)/[Mg + (L -- 1) M I + L (b - 1) M~] 

=(Vg-- 1)/[Vg+ L--  1 + L(b--  1)/V~]. 



Table 3. Analysis of variance on grain and straw yields from three trials together with estimates of heritabilities 
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Item Grain yield Straw yield 
Trials Trials 

1 2 3 1 2 3 

Mean squares 

Source df Mean squares 

Blocks 2 633,095 143,392 61,707 51,691 1,130,316 
Genotype 63 509,155 249,945 51,668 263,573 94,976 
Error (4~ z) 126 58,801 19,268 7,010 82,794 45,866 

Variance component estimates 

~z 58,801 19,268 7,010 82,794 45,866 
~ 150,118 76,892 14,886 60,260 16,370 Gg 

Estimates of heritability 

~2 0.72 0.80 0.68 0.42 0.26 

95% confidence intervals 

Lower 0.6112 0.7160 0.5630 0.2685 0.1090 
Upper 0.8068 0.8653 0.7781 0.5698 0.4270 

99% confidence intervals 

Lower 0.5726 0.6850 0.5219 0.2201 0.0628 
Upper 0.8298 0.8820 0.8040 0.6127 0.4771 

SE, bias, skewness and kurtosis 

194,008 
89,148 
32,124 

32,124 
19,008 

0.37 

0.2171 
0.5265 

0.1689 
0.5720 

Approx. s~ (la 2) 0.0499 0.0379 0.0550 0.0776 0.0818 0.0797 
Simul. s~ (f~2) 0.0524 0.0402 0.0575 0.0796 0.0832 0.0861 

Approx. bias 0.0087 0.0062 0.0099 0.0191 0.0286 0.0214 
Simul. bias -0.0052 -0.0045 -0.0054 -0.0045 -0.0027 -0.0041 

Simul. skewness -0.72 -0.83 -0.67 -0.35 -0.14 -0.29 
Simul. kurtosis 0.27 0.43 0.20 -0.12 -0.23 -0.15 

Approx.: approximated values. Simul.: simulated values based on 2,000 runs 

The distribution of ~2 is based on three independent quadratic 
forms (Mg, MI, M~) or on two dependent variance ratios Vg and 
V~ (see Appendix II). Ifh z is based on progeny means (Knapp et 
al. 1985), then the heritability estimate is expressed only in terms 
of V~; therefore its distribution is determined as in the previous 
section. The probability distribution of fi2 can be expressed as 
that of a linear combination of independent chi-square variables. 
Its distribution, however, depends on four parameters (v, b, L 
and fl~) in addition to h 2 where 2 2 2 fll = al/ae the ratio of G x E 
interaction variance to error variance. A brief derivation of the 
results presented in the following is in Appendix II. 

Bias h 2[Cll/A 1-C12/(A 1 A2) ] 

Standard error h 2 [Cll/A 2 +C22/A 2 - 2  C12/(A 1 A2)] 1/2 

Probability of invalid estimate 
H[q, p, (1 +b  22)/(1 +b  )o2+b L 2~z)]. 

Probability distribution Prob (Z~ > Z) 

100 (i - c  0 % asymptotic confidence interval 
[fa 2 -- Z=/2 S E  (f12), fl 2 -1- Z=/2 SE (f12)] 

o2 and )2 Heritability i n terms of/~g 
2 2 2 2 2 2 2 h =2J(2g +-~i + 1), where 2g = a g / ~  e 

Obtaining exact confidence limits for h 2 appears to be cumber- 
some, since it involves two ratios ()2 and fi~) whose estimates are 
not independent, if we take the ratios of mean squares. An 
asymptotic confidence interval is given in the above using an 
asymptotic standard error and percentage points Z~/2 of the 
standard normal distribution. 

Results  and discussion 

Sixty four genotypes from three trials were evaluated in 
randomized complete block designs with three replica- 
tions at three locations (Tel Hadya, Bouider and Breda) 
in Syria. These trials were conducted by the Cereals Pro- 
gram, ICARDA. Data on straw and grain yields were 
collected during May, 1990. The analyses of these data 
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Table 4. Combined analysis of variance of the three trials and 
estimation of heritability 

Mean squares 

Source df Grain yield Straw yield 

Location (L) 2 1.314 x l0 s 1.153 x l0 s 
Blocks/Loc 6 2.794 x 105 4.587 x 105 
Genotype (G) 63 5.127 x 10 ~ 2.078 x 10 s 
G x L 126 1.490 x 105 1.200 x 105 
Error (6~) 378 2.836 x t0 '~ 5.359 x 104 

Variance component estimates 

~i 4"0411 x 104 0"9756 x 104 
4.0213 x 10 4 2.2137 x 10 '~ 

d~ 2.8360 X 1 0  4 5.3590 x 104 

Estimates of heritability and standard errors 

la 2 0.3710 0.1140 
SE 0.0680 0.0490 
Bias 0.0160 0.0220 

for an estimation of heritability are given in Ta- 
bles 3 and 4. 

The standard errors approximated from the formula 
in (4) are reasonable close to the corresponding simulated 
values�9 Relativey low magnitudes of skewness and kurto- 
sis values indicate that the distribution of estimates of 
heritability can be reasonably approximated by the nor- 
mal distribution. However, the approximated and simu- 
lated biases are similar and low magnitude for high val- 
ues of heritabilities. 

Appendix I 

Bias and standard error of ]12 

An approximation to the bias is obtained using Taylor's 
series expansion (Kendall and Stuart 1969). 

Bias (~2) = E (fi z) - h 2 = E (N/D) - h 2 

where the numerator  N = M g - M ~  and the denominator  
D =  M g + ( b - 1 ) M e .  An approximation of the bias is 

B (fi2) = [E (N)/E (D)] 
�9 {var (N)/[E (N)]2 _ c o v  (N, D)/[E (N) ~E (D)]}. 

The expected value of random variable Z 2 is v with a 
variance 2v; further, qMg~(a~2+bo.g)2 Zq2 and fMo 
~o'2 Z}, where q = v - 1 ,  f = q ( b - 1 ) .  We obtain the ex- 
pectations, variances and covariances of N and D as 

E (N) = b o -2 = b 2 o.~, where 
- -  2 2 2 - Crg/o.e = h2/(1 -- h 2) expressed in terms of h 2, 

E (D) = b (o.~ 2 + o-~) = b o-2/(1 - h/) ,  

var (N) = v a t  (Mg) -}- var (M e) = 2 (a 2 + b o-gz)2/q + 2 o.~/f 

= 2 o.e 4 [(1 + b 22)2/q + 1/0, 

var (D) = 2 o, 4 [(1 + b 22)2/q + ( b -  1)2/f], 

cov (N, D) = 2 o-~ [(1 + b L 2 ) / / q -  (b - 1)/t]. 

After algebraic simplification, we get 

B(fi2) = 2(1 - h  2) [1 + ( b -  1) h21 [1 + ( b -  2) hZ]/(h 2 b 0 .  

The mean square error (or variance ignoring bias) of ta 2 
is given by 

var(fi 2) = [E (N)/E(D)] 2 {var (N)/[E (N) 2 

+ var (D)/[E (D)]2 _ 2 cov (N, D)/[E (N) E (D)]} 

= 2 (1 - h2)  2 [1 + ( b -  1) h212/(b f). 

Probability of a negative estimate of h 2 

Since fi2 has a difference expression, M g - M o ,  as its nu- 
merator, which may sometimes be negative, this results in 
an invalid estimate of h 2. The probability of such cases 
(Gill and Jensen 1968) is given by 

Prob (fx 2 < 0) = Prob(Mg < M,) = Prob (V r < 1) 

= Prob [W < o~/(a~ + b o-~)] 

= Prob [W < (1 + b ~ 2 ) -  1] 

= H f q ,  f, (1 + b  22) -1] 

where H [nl, n2, x] is the lower-tail probability at point x 
of the F distribution with n 1 and n2 df and 22=h2/  
(1-h2) .  The integral form of H [n 1, n 2, x] is 

x 

H [nl, n2, x] = S [B (nl/2, n2/2)] - 1 (nl/n2)nl 1/2 
0 

�9 y(nl/2)- 1 (] + nl  y/n2) -(nl +n2)/2 dy 

and B (n, m) is the beta function. 

Probability distribution of h 2 

The exact probability distribution of fl 2 is 

Prob (fi2 < X) = Pro b [(V r -  l)/(V~ + b - 1) < x] 

= P r o b ( w <  y ) = H [ q ,  f, y] 

where y = [1 + x b/(1 - x)]/(1 + b 22). 

Confidence interval 

To compute the 100(1 -~ )% confidence interval for h 2, 
let F L and Fu be respectively the c~/2 and 1-c~/2 lower 
probability points of the F distribution with (q, f) degrees 
of freedom�9 Using the distributional behavior of W as the 
F distribution, it is easy to translate 

P r o b ( F L < W <  Fv)= l - c~  

into 

Prob [(V r - Fu)/(V r + (b - 1) Fu) _< h 2 

_< ( v r -  FL)/(Vr + ( b -  1) F0]  = 1 - ~ .  



Thus an exact 100 (1 - ~ )  % confidence interval is t112 ~2]  k L~ UI, 
where 

1]~ = (V~ - Vv)/[V , + (b - 1) Fu] 

and 

112 = (V r _ FL)/[V r + ( b -  1) VL]. 

Appendix II 

Evaluation of bias, standard error, and the probability of 
a negative estimate of heritability from multi-location 
trials. 

Dependence o f  Vg and V I 

Compute the covariance coy (Vg, Vr) 

COV (Vg, Vi) 

= E (v~ v , ) -  E (v 0 E (Ve) 

= g (mg) g ( M ~ )  - g ( m g )  g ( ~ )  g ( m I )  E (M--~) 

Bias and mean square error o f  1~ 2 

We shall follow the Taylor series expansion approach on 
112 in terms of the numerator N = M g -  M~ and denomina- 
tor D = M g + ( L - 1 )  M ~ + L ( b - 1 )  M e. Notice that 

2 and E(D) = b L 2 " 2 2 E(N) = b  L 2~ a~, (r e (,tg +2 ,  + 1). 

B (~2) = E(~2)- h 2 = h 2 [C1 ffA1 - C12/( A1 A 2 ) ] ,  

var (~2) = h a [C 1 ff A2 + C22/A2 - 2 C 12/(A1 A2)] 

where 2 2 2 2 O'g/0" e , A1 = b L 2g, 2g = and the ratio of genetic vari- 
ance to error variance components, A 2 = b L (22 + 22 + 1), 

C , ~ = 2 [ ( 1 + b  2 ~ + b  L 

C22 =2[(1 + b  212+b L 
+ L 2 ( b -  1)2/I], 

C12 =2[(1 + b  212+b L 

) 2)2/q q_ (1 q_ b 22)2/b] ,  

292)2/q+ (L - 1) 2 (1 + b  ,~,i2)2/b 

2~)2 /q-2(L  - 1)(1 + b  212)2/b1. 

The heritability in terms of 22 and ).2 is 

2 2 2 2 h = 2g/(2g + 2i + 1). 

Probability o f  negative estimates o f  h 2 

The quantity h 2 would be estimated as negative if 
Mg < M I. Thus, 

Prob (1] 2 < 0) = Prob (Mg < MI) 

= Prob [W < (a 2 + b a2)/(a 2 + b cr~ + b L ag2)] 
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where W = [Mg/(% 2 + b a 2 + b L a2)]/[M,/(cr 2 + b cq2)] and 

would follow the F-distribution with q and p df. Thus 

Prob(h2 < 0 ) =  H[q, p, (1 + b  22)/(1 + b  2 2 + b  L 22)]. 

Probability distribution o f  I~ 2 

We can express the probability Prob (fl 2 > x) as a proba- 
bility on a linear combination of  independent chi-squares 
variables. 

Prob (~2 > x) 

= Prob { ( M g -  g i ) / [ g g  + ( L -  1) g i  + L ( b -  1) Me] > x}. 

2 2 p M i ~ ( l + b ~ . i 2 +  Since q M g ~ ( l + b  2 2 + b  L22  ) a e Zq, 
2 2 p M I~ (1 + b  22) b -  1 2 2 and f M e b L 22 ) a e Zq , ae Zp, 

2 Zr2. We have, after simplification, O" e 

Prob (ft 2 > x) = Prob (01 Z 2 + 02 Zp 2 + 03 )~r 2 > 0).  

Following an approximation given by Imhoff  (1961), the 
above probability can be approximated by Prob (Z 2 > Z), 
as a probability function having a chi-square distribution 
where 

3 3 
V = C 2 / C  3 , 

Z = - -  C 1 (v/C2)  1/2 q- v ,  

C1 =01 q+O2 p + 0 3  f ,  

C 2 = q O 2 + p O 2 + f O  2 , 

C 3 = q 0 3 + p 0 3 + f 0 3  a . 

Thus the probability point of  the ft 2 distribution can be 
obtained by using a suitable numerical algorithm. 
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